
MATLAB®

for Engineers
fourth edition

Holly Moore

This is a special edition of an established title widely
used by colleges and universities throughout the world.
Pearson published this exclusive edition for the benefit
of students outside the United States and Canada. If you
purchased this book within the United States or Canada
you should be aware that it has been imported without
the approval of the Publisher or Author.

Pearson Global Edition

ISBN-13:
ISBN-10:

978-1-292-06053-8
1-292-06053-0

9 7 8 1 2 9 2 0 6 0 5 3 8

9 0 0 0 0

Global
edition

M
AT

LA
B

® for Engineers
M

oore
fo

u
rt

h

ed
it

io
n

G
lo

bal

ed

it
io

n

Global
edition

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address
a wide range of subjects and requirements, equipping
students with the best possible learning tools. This Global
Edition preserves the cutting-edge approach and pedagogy
of the original, but also features alterations, customization,
and adaptation from the North American version.

MATLAB® for Engineers

A01_MOOR0538_04_SE_FM.INDD 1 3/1/14 12:37 AM

A01_MOOR0538_04_SE_FM.INDD 2 3/1/14 12:37 AM

 This page is intentionally left blank.

MATLAB® for Engineers

Fourth Edition
Global Edition

Holly Moore
Salt Lake Community College
Salt Lake City, Utah

Global Edition contributions by

Somitra Kumar Sanadhya
Indraprastha Institute of Information Technology, Delhi

Boston  •  Columbus  •  Indianapolis  •  New York
San Francisco  •  Upper Saddle River  •  Amsterdam
Cape Town  •  Dubai  •  London  • Madrid  • Milan
Munich  •  Paris  • Montreal  •  Toronto  •  Delhi
Mexico City  •  São Paulo  •  Sydney  •  Hong Kong
Seoul  •  Singapore  •  Taipei  •  Tokyo

A01_MOOR0538_04_SE_FM.INDD 3 3/1/14 12:37 AM

VP/Editorial Director, Engineering/Computer Science: Marcia J.
Horton
Executive Editor: Holly Stark
Editorial Assistant: Carlin Heinle
Senior Marketing Manager: Tim Galligan
Senior Managing Editor: Scott Disanno
Project Manager: Priyadharshini Dhanagopal
Head of Learning Asset Acquisition, Global Edition: Laura Dent
Publishing Administrator and Business Analyst, Global Edition:
Shokhi Shah Khandelwal

Acquisitions Editor, Global Edition: Aditee Agarwal
Project Editor, Global Edition: Sinjita Basu
Senior Manufacturing Controller, Production, Global Edition:
Trudy Kimber
Cover Designer: Bruce Kenselaar
Cover Image: Shutterstock
Full-Service Project Management: Pavithra Jayapaul, Jouve
Cover Printer: Courier Kendallville

ISBN 10: 1-292-06053-0
ISBN 13: 978-129-206053-8http://www.pearsonglobaleditions.com

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Holly Moore to be identified as the author of this work have been asserted by her in accordance with the Copyright, Designs
and Patents Act 1988.

Authorized adaptation from the United States edition, entitled MATLAB® for Engineers, 4th edition, ISBN 978-0-133-48597-4, by Holly Moore, published
by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmittedin any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, withouteither the prior written permission of the publisher or a
license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby
Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners.The use of any trademark in this text does not vest in the author or
publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorse-
ment of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10  9  8  7  6  5  4  3  2  1
14 13 12 11 10

Typeset in New Baskerville Std Roman by Pavithra Jayapaul, Jouve
Printed and bound by Courier Kendallville in The United States of America

A01_MOOR0538_04_SE_FM.INDD 4 3/1/14 12:37 AM

 (Print)

ISBN 13: 978-129-206074 3- (PDF)

Contents

About This Book	 11
Dedication and Acknowledgments	 15

1  •  About Matlab®	 17 

1.1	 What Is MATLAB®?  17
1.2	 Student Edition of MATLAB®  18
1.3	 How Is MATLAB® Used in Industry?  19
1.4	 Problem Solving in Engineering and Science  21

2  •  Matlab® Environment	 25 

2.1	 Getting Started  25
2.2	 MATLAB® Windows  27
2.3	 Solving Problems with MATLAB®  33
2.4	 Saving Your Work  58
Summary  68
MATLAB® Summary  69
Key Terms  71
Problems  71

3  •  Built-In Matlab® Functions 	 79

Introduction  79
3.1  Using Built-In Functions  79
3.2  Using the Help Feature  81
3.3  Elementary Math Functions  84
3.4  Trigonometric Functions  92
3.5  Data Analysis Functions  96
3.6  Random Numbers  116
3.7  Complex Numbers  120
3.8  Computational Limitations  124
3.9  Special Values and Miscellaneous Functions  125
Summary  127

5

A01_MOOR0538_04_SE_FM.INDD 5 3/1/14 12:37 AM

6  Contents

MATLAB® Summary  128
Key Terms  129
Problems  130

4  •  Manipulating Matlab® Matrices 	 137

4.1	 Manipulating Matrices  137
4.2	 Problems with Two Variables  144
4.3	 Special Matrices  151
Summary  157
MATLAB® Summary  158
Key Terms  158
Problems  158

5  •  Plotting 	 165

Introduction  165
5.1	 Two-Dimensional Plots  165
5.2	 Subplots  182
5.3	 Other Types of Two-Dimensional Plots  184
5.4	 Three-Dimensional Plotting  201
5.5	 Editing Plots from the Menu Bar  207
5.6	 Creating Plots from the Workspace Window  209
5.7	 Saving Your Plots  210
Summary  211
MATLAB® Summary  211
Problems  213

6  •  User-Defined Functions 	 223

Introduction  223
6.1	 Creating Function M-Files  223
6.2	 Creating Your Own Toolbox of Functions  242
6.3	 Anonymous Functions and Function Handles  244
6.4	 Function Functions  245
6.5	 Subfunctions  246
Summary  249
MATLAB® Summary  250
Key Terms  251
Problems  251

7  •  User-Controlled Input and Output 	 258

Introduction  258
7.1	 User-Defined Input  258
7.2	 Output Options  262
7.3	 Graphical Input  272
7.4	 More Cell Mode Features  273

A01_MOOR0538_04_SE_FM.INDD 6 3/1/14 12:37 AM

﻿Contents  7 

7.5	 Reading and Writing Data from Files  275
7.6	 Debugging Your Code  277
Summary  281
MATLAB® Summary  282
Key Terms  283
Problems  283

8  •  Logical Functions and Selection Structures 	 287

Introduction  287
8.1	 Relational and Logical Operators  288
8.2	 Flowcharts and Pseudocode  290
8.3	 Logical Functions  292
8.4	 Selection Structures  298
8.5	 Debugging  314
Summary  315
MATLAB® Summary  316
Key Terms  316
Problems  316

9  •  Repetition Structures 	 327

Introduction  327
9.1	 For Loops  328
9.2	 While Loops  336
9.3	 Break and Continue  344
9.4	 Midpoint Break Loops  345
9.5	 Nested Loops  349
9.6	 Improving the Efficiency of Loops  350
Summary  353
MATLAB® Summary  354
Key Terms  354
Problems  354

10  •  Matrix Algebra 	 359

Introduction  359
10.1  Matrix Operations and Functions  359
10.2  Solutions of Systems of Linear Equations  379
10.3  Special Matrices  393
Summary  396
MATLAB® Summary  398
Key Terms  398
Problems  398

11  •  Other Kinds of Arrays 	 406

Introduction  406
11.1  Data Types  407
11.2  Multidimensional Arrays  416

A01_MOOR0538_04_SE_FM.INDD 7 3/1/14 12:37 AM

8  Contents

11.3  Character Arrays  418
11.4  Cell Arrays  423
11.5  Structure Arrays  424
Summary  432
MATLAB® Summary  433
Key Terms  433
Problems  433

12  •  Symbolic Mathematics 	 439

Introduction  439
12.1  Symbolic Algebra  440
12.2  Solving Expressions and Equations  448
12.3  Symbolic Plotting  461
12.4  Calculus  469
12.5  Differential Equations  483
12.6  Converting Symbolic Expressions to Anonymous Functions  486
Summary  487
MATLAB® Summary  489
Problems  490

13  •  Numerical Techniques 	 499

13.1  Interpolation  499
13.2  Curve Fitting  509
13.3  Using the Interactive Fitting Tools  522
13.4  Differences and Numerical Differentiation  525
13.5  Numerical Integration  534
13.6  Solving Differential Equations Numerically  540
Summary  547
MATLAB® Summary  549
Key Terms  550
Problems  550

14  •  Advanced Graphics 	 559

Introduction  559
14.1  Images  559
14.2  Handle Graphics  575
14.3  Animation  579
14.4  Other Visualization Techniques  585
14.5  Introduction to Volume Visualization  587
Summary  590
MATLAB® Summary  591
Key Terms  592
Problems  593

A01_MOOR0538_04_SE_FM.INDD 8 3/1/14 12:37 AM

﻿Contents  9 

15  •  Creating Graphical User Interfaces 	 595

Introduction  595
15.1  A Simple GUI with One User Interaction  596
15.2 � A Graphical User Interface with Multiple User

Interactions—Ready_Aim_Fire  604
15.3  An Improved Ready_Aim_Fire Program  607
15.4  A Much Better Ready_Aim_Fire Program  608
15.5  Built-In GUI Templates  612
Summary  616
Key Terms  616
Problems  616

16  •  Simulink®—A Brief Introduction 	 618

Introduction  618
16.1  Applications  618
16.2  Getting Started  619
16.3  Solving Differential Equations with Simulink®  627
Summary  632
Key Terms  633
Problems  633

Appendix A  •  �Special Characters, Commands,
and Functions	 637

Appendix B  •  Scaling Techniques	 652

Appendix C  •  The Ready_Aim_Fire GUI	 655

Appendix D	 660

Index	 661

A01_MOOR0538_04_SE_FM.INDD 9 3/1/14 12:37 AM

A01_MOOR0538_04_SE_FM.INDD 10 3/1/14 12:37 AM

 This page is intentionally left blank.

11 ﻿

About This Book

This book grew out of my experience teaching MATLAB® and other computing
languages to freshmen engineering students at Salt Lake Community College.
I was frustrated by the lack of a text that “started at the beginning.” Although there
were many comprehensive reference books, they assumed a level of both mathem-
atical and computer sophistication that my students did not possess. Also, because
MATLAB® was originally adopted by practitioners in the fields of signal processing
and electrical engineering, most of these texts provided examples primarily from
those areas, an approach that didn’t fit with a general engineering curriculum.
This text starts with basic algebra and shows how MATLAB® can be used to solve
engineering problems from a wide range of disciplines. The examples are drawn
from concepts introduced in early chemistry and physics classes and freshman and
sophomore engineering classes. A standard problem-solving methodology is used
consistently.

The text assumes that the student has a basic understanding of college algebra
and has been introduced to trigonometric concepts; students who are mathematically
more advanced generally progress through the material more rapidly. Although the
text is not intended to teach subjects such as statistics or matrix algebra, when the
MATLAB® techniques related to these subjects are introduced, a brief background is
included. In addition, sections describing MATLAB® techniques for solving problems
by means of calculus and differential equations are introduced near the end of appro-
priate chapters. These sections can be assigned for additional study to students with a
more advanced mathematics background, or they may be useful as reference material
as students progress through an engineering curriculum.

The book is intended to be a “hands-on” manual. My students have been most
successful when they read the book while sitting beside a computer and typing in the
examples as they go. Numerous examples are embedded in the text, with more com-
plicated numbered examples included in each chapter to reinforce the concepts
introduced. Practice exercises are included in each chapter to give students an
immediate opportunity to use their new skills.

The material is grouped into three sections. The first, An Introduction to Basic
MATLAB® Skills, gets the student started and contains the following chapters:

•	 Chapter 1 shows how MATLAB® is used in engineering and introduces a stand-
ard problem-solving methodology.

•	 Chapter 2 introduces the MATLAB® environment and the skills required to
perform basic computations. It also introduces M-files, and the concept of
organizing code into cells. Doing so early in the text makes it easier for students
to save their work and develop a consistent programming strategy.

•	 Chapter 3 details the wide variety of problems that can be solved with built-in
MATLAB® functions. Background material on many of the functions is provided
to help the student understand how they might be used. For example, the differ-
ence between Gaussian random numbers and uniform random numbers is
described, and examples of each are presented.

A01_MOOR0538_04_SE_FM.INDD 11 3/1/14 12:37 AM

12  About This Book

•	 Chapter 4 demonstrates the power of formulating problems by using matrices
in MATLAB® and expanding on the techniques employed to define those
matrices. The meshgrid function is introduced in this chapter and is used to
solve problems with two variables. The difficult concept of meshing variables is
revisited in Chapter 5 when surface plots are introduced.

•	 Chapter 5 describes the wide variety of both two-dimensional and three-
dimensional plotting techniques available in MATLAB®. Creating plots via
MATLAB® commands, either from the command window or from within an
M-file, is emphasized. However, the extremely valuable techniques of interac-
tively editing plots and creating plots directly from the workspace window are
also introduced.

		 MATLAB® is a powerful programming language that includes the basic
constructs common to most programming languages. Because it is a scripting
language, creating programs and debugging them in MATLAB® is often easier
than in traditional programming languages such as C++. This makes MATLAB®
a valuable tool for introductory programming classes. The second section of
the text, Programming in MATLAB®, introduces students to programming and
consists of the following chapters:

•	 Chapter 6 describes how to create and use user-defined functions. It also
teaches students how to create a “toolbox” of functions to use in their own pro-
gramming projects.

•	 Chapter 7 introduces functions that interact with the program user, including
user-defined input, formatted output, and graphical input techniques. The use
of MATLAB®’s debugging tools is also introduced.

•	 Chapter 8 describes logical functions such as find and demonstrates how they
vary from the if and if/else structures. The switch case structure is also intro-
duced. The use of logical functions over control structures is emphasized,
partly because students (and teachers) who have previous programming
experience often overlook the advantages of using MATLAB®’s built-in mat-
rix functionality.

•	 Chapter 9 introduces repetition structures, including for loops, while loops, and
midpoint break loops which utilize the break command. Numerous examples
are included because students find these concepts particularly challenging.

Chapters 1 through 9 should be taught sequentially, but the chapters in
Section 3, Advanced MATLAB® Concepts, do not depend upon each other. Any or
all of these chapters could be used in an introductory course or could serve as ref-
erence material for self-study. Most of the material is appropriate for freshmen. A
two-credit course might include Chapters 1 through 9 plus Chapter 10, while a
three-credit course might include Chapters 1 through 14, but eliminate Sections 12.4,
12.5, 13.4, 13.5, and 13.6, which describe differentiation techniques, integration
techniques, and solution techniques for differential equations. Chapters 15 and
16 will be interesting to more advanced students, and might be included in a
course delivered to sophomore or junior students instead of to freshmen. The
skills developed in these chapters will be especially useful as students become
more involved in solving engineering problems:

•	 Chapter 10 discusses problem solving with matrix algebra, including dot prod-
ucts, cross products, and the solution of linear systems of equations. Although
matrix algebra is widely used in all engineering fields, it finds early application
in the statics and dynamics classes taken by most engineering majors.

A01_MOOR0538_04_SE_FM.INDD 12 3/1/14 12:37 AM

About This Book  13 ﻿

•	 Chapter 11 is an introduction to the wide variety of data types available in
MATLAB®. This chapter is especially useful for electrical engineering and com-
puter engineering students.

•	 Chapter 12 introduces MATLAB®’s symbolic mathematics package, built on
the MuPad engine. Students will find this material especially valuable in math-
ematics classes. My students tell me that the package is one of the most valu-
able sets of techniques introduced in the course. It is something they start
using immediately.

•	 Chapter 13 presents numerical techniques used in a wide variety of applica-
tions, especially curve fitting and statistics. Students value these techniques
when they take laboratory classes such as chemistry or physics or when they take
the labs associated with engineering classes such as heat transfer, fluid dynam-
ics, or strengths of materials.

•	 Chapter 14 examines graphical techniques used to visualize data. These tech-
niques are especially useful for analyzing the results of numerical analysis calcu-
lations, including results from structural analysis, fluid dynamics, and heat
transfer codes.

•	 Chapter 15 introduces MATLAB®’s graphical user interface capability, using the
GUIDE application. Creating their own GUI’s gives students insight into how the
graphical user interfaces they use daily on other computer platforms are created.

•	 Chapter 16 introduces Simulink®, which is a simulation package built on top of
the MATLAB® platform. Simulink® uses a graphical user interface that allows
programmers to build models of dynamic systems. It has found significant
acceptance in the field of Electrical Engineering but has wide application
across the engineering spectrum.

Appendix A lists all of the functions and special symbols (or characters) intro-
duced in the text. Appendix B describes strategies for scaling data, so that the
resulting plots are linear. Appendix C includes the complete MATLAB® code to
create the Ready_Aim_Fire graphical user interface described in Chapter 15. An
instructor web site includes the following material:

•	 M-files containing solutions to practice exercises. (These files are also available
on the student version of the website.)

•	 M-files containing solutions to example problems
•	 M-files containing solutions to homework problems
•	 PowerPoint slides for each chapter
•	 All of the figures used in the text, suitable for inclusion in your own PowerPoint

presentations
•	 A series of lectures (including narration) suitable for use with online classes or

as reviews

Appendix E Solutions to Practice Exercises can be found at the following
website:

www.pearsonglobaleditions.com/moore

What’s New in this Edition
New versions of MATLAB® are rolled out every six months, which makes keeping
any text up-to-date a challenge. Significant changes were introduced in version
2012b, including the introduction of MATLAB® 8 which has a redesigned

A01_MOOR0538_04_SE_FM.INDD 13 3/1/14 12:37 AM

14  About This Book

user-interface. The changes in this edition reflect these software updates. They
include:

•	 All of the screen shots throughout the book were updated to reflect the 2013a
release.

•	 Many built-in graphical user interfaces (GUIs) are now packaged in MATLAB®
as “apps.” Apps are discussed in Chapter 2 and the MuPad app is introduced in
Chapter 12.

•	 The creation of user-defined symbolic functions is introduced in Chapter 12.
•	 The behavior of several symbolic functions has changed, which is reflected in

the content of Chapter 12.
•	 Additional problems were added and some problems were modified, based on

the feedback from both instructors and students who have used the book.
•	 A number of new functions are introduced throughout the book, suggested to

us by adopters of the text.

A01_MOOR0538_04_SE_FM.INDD 14 3/1/14 12:37 AM

15 ﻿

Dedication and
Acknowledgments

This project would not have been possible without the support of my family. Thanks
to Mike, Heidi, Meagan, and David, and to my husband, Dr. Steven Purcell. I also
benefited greatly from the suggestions for problems related to electricity from Lee
Brinton and Gene Riggs of the SLCC Electrical Engineering Department. Their
cheerful efforts to educate me on the mysteries of electricity are much appreciated.
I’d also like to thank Quentin McRae, also at SLCC, who made numerous sugges-
tions that improved the homework problems.

This book is dedicated to my father, Professor George E. Moore, who taught in
the Department of Electrical Engineering at the South Dakota School of Mines and
Technology for almost 20 years. Professor Moore earned his college degree at the age
of 54 after a successful career as a pilot in the United States Air Force and was a living
reminder that you are never too old to learn. My mother, Jean Moore, encouraged
both him and her two daughters to explore outside the box. Her loving support made
it possible for both my sister and I to enjoy careers in engineering—something few
women attempted in the early 1970s. I hope that readers of this text will take a minute
to thank those people in their lives who’ve helped them make their dreams come
true. Thanks Mom and Dad.

Pearson wishes to thank and acknowledge the following people for their review
work on the Global Edition:

Dr. Debaprasad Das, Associate Professor and Head of the Department of
Electronics and Telecommunication Engineering at Assam University, Silchar

Dr. Balwinder Singh Surjan, Associate Professor of the Electrical Engineering
Department at PEC University of Technology, Chandigarh

Ms. Anju Mishra, Assistant Professor of Engineering and Technology at Amity
University, Noida

A01_MOOR0538_04_SE_FM.INDD 15 3/1/14 12:37 AM

A01_MOOR0538_04_SE_FM.INDD 16 3/1/14 12:37 AM

 This page is intentionally left blank.

1.1 What is Matlab®?
MATLAB® is one of a number of commercially available, sophisticated mathematical
computation tools, which also include Maple, Mathematica, and MathCad. Despite
what proponents may claim, no single one of these tools is “the best.” Each has
strengths and weaknesses. Each allows you to perform basic mathematical computa-
tions. They differ in the way they handle symbolic calculations and more complicated
mathematical processes, such as matrix manipulation. For example, MATLAB® (short for
Matrix Laboratory) excels at computations involving matrices, whereas Maple excels
at symbolic calculations. At a fundamental level, you can think of these programs as
sophisticated computer-​based calculators. They can perform the same functions as
your scientific calculator—​and many more. If you have a computer on your desk, you
may find yourself using MATLAB® instead of your calculator for even the simplest
mathematical applications—​for example, balancing your checkbook. In many engi-
neering classes, the use of programs such as MATLAB® to perform computations is
replacing more traditional computer programming. Although programs such as
MATLAB® have become a standard tool for engineers and scientists, this doesn’t
mean that you shouldn’t learn a high-​level language such as C++, JAVA, or FORTRAN.

Because MATLAB® is so easy to use, you can perform many programming tasks
with it, but it isn’t always the best tool for a programming task. It excels at numerical
calculations—​especially matrix calculations—​and graphics, but you wouldn’t want to

After reading this chapter, you
should be able to:
•	Understand what

MATLAB® is and why it is
widely used in engineering
and science

•	Understand the advantages
and limitations of the stu-
dent edition of MATLAB®

•	Formulate problems using
a structured problem-​
solving approach

Objectives

About MATLAB®

c h a p t e r

1

M01_MOOR0538_04_SE_C01.INDD 17 3/1/14 12:34 AM

18  Chapter 1  About MATLAB®

use it to write a word-​processing program. For large applications, such as operating
systems or design software, C++, JAVA, or FORTRAN would be the programs of
choice. (In fact, MATLAB®, which is a large application program, was originally
written in FORTRAN and later rewritten in C, a precursor of C++.) Usually, high-​
level programs do not offer easy access to graphing—​an application at which
MATLAB® excels. The primary area of overlap between MATLAB® and high-​level
programs is “number crunching”—repetitive calculations or the processing of large
quantities of data. Both MATLAB® and high-​level programs are good at processing
numbers. A “number-​crunching” program is generally easier to write in MATLAB®,
but usually it will execute faster in C++ or FORTRAN. The one exception to this
rule is calculations involving matrices. MATLAB® is optimized for matrices. Thus, if
a problem can be formulated with a matrix solution, MATLAB® executes substan-
tially faster than a similar program in a high-​level language.

MATLAB® is available in both professional and student versions. The profes-
sional version is probably installed in your college or university computer labora-
tory, but you may enjoy having the student version at home. MATLAB® is updated
regularly; this textbook is based on MATLAB® 8.1. If you are using earlier versions
such as MATLAB® 6 or 7, you will notice a significant difference in the layout of the
graphical user interface; however, the differences in coding approaches are minor.
There are substantial differences in versions that predate MATLAB® 5.5.

The standard installation of the professional version of MATLAB® is capable of
solving various technical problems. Additional capability is available in the form of
function toolboxes. These toolboxes are purchased separately, and they may or may
not be available to you. You can find a complete list of the MATLAB® product fam-
ily at The MathWorks web site, www.mathworks.com.

1.2 Student Edition of Matlab®

The professional and student editions of MATLAB® are very similar. Beginning stu-
dents probably won’t be able to tell the difference. Student editions are available
for Microsoft Windows, Mac, and Linux operating systems and can be purchased
from college bookstores or online from The MathWorks at www.mathworks.com.

The MathWorks packages its software in groups called releases, and MATLAB® 8.1
is featured, along with other products, such as Simulink, in Release R2013a. New
versions are released every six months. The release number is the same for both the
student and professional editions, but the student version may lag the professional
version by several months. The student edition of R2013a includes the following
features:

•	 Full MATLAB®

•	 Simulink, with the ability to build models with up to 1000 blocks (the profes-
sional version allows an unlimited number of blocks)

•	 Symbolic Math Toolbox
•	 Control Systems Toolbox
•	 Data Acquisition Toolbox
•	 Instrument Control Toolbox
•	 Simulink Control Design
•	 Signal Processing Toolbox
•	 DSP System Toolbox
•	 Statistics Toolbox
•	 Optimization Toolbox

Key Idea
MATLAB® is optimized for
matrix calculations

Key Idea
MATLAB® is regularly
updated

M01_MOOR0538_04_SE_C01.INDD 18 3/1/14 12:34 AM

1.3 How is MATLAB® Used in Industry?  19

•	 Image Processing Toolbox
•	 A single-​user license, limited to students for use in their classwork (the profes-

sional version is licensed either singly or to a group)

Toolboxes other than those included with the student edition may be purchased
separately. You should be aware that if you are using a professional installation of
MATLAB®, all of the toolboxes available in the student edition may not be available
to you.

The biggest difference you should notice between the professional and student
editions is the command prompt, which is

>>

in the professional version and

EDU>>

in the student edition.

1.3 How is MATLAB® used in Industry?
The ability to use tools such as MATLAB® is quickly becoming a requirement for
many engineering positions. A recent job search on Monster.com found the follow-
ing advertisement:

. . . ​is looking for a System Test Engineer with Avionics experience
Responsibilities include modification of MATLAB® scripts, execution of
Simulink simulations, and analysis of the results data. Candidate MUST be
very familiar with MATLAB®, Simulink, and C++ . . .

This advertisement isn’t unusual. The same search turned up 771 different
companies that specifically required MATLAB® skills for entry-​level engineers.
Widely used in all engineering and science fields, MATLAB® is particularly popular
for electrical engineering applications. The sections that follow outline a few of the
many applications currently using MATLAB®.

1.3.1 Electrical Engineering
MATLAB® is used extensively in electrical engineering for a wide variety of applica-
tions. For example, Figure 1.1 includes several images created to help visualize the
arrangements of electromagnetic fields in space and time. These images represent
real physical situations with practical application. Cellular communications, medi-
cal diagnostics, and home computers are just a few of the technologies that exist
thanks to our understanding of this beautiful phenomenon.

Key Idea
MATLAB® is widely used in
engineering

(a) (b) (c)

Figure 1.1
Arrangements of
Electromagnetic Fields.
(a) Surface Plasmon
Polariton; (b) Light
Scattering by a Circular
Metal Cylinder (c) Beam
forming by a Six-Element
Dipole Array. (Used with
permission of Dr. James R.
Nagel, University of Utah
Department of Electrical
and Computer Engineering).

M01_MOOR0538_04_SE_C01.INDD 19 3/1/14 12:34 AM

20  Chapter 1  About MATLAB®

1.3.2 Biomedical Engineering
Medical images are usually saved as dicom files (the Digital Imaging and
Communications in Medicine standard). Dicom files use the file extension .dcm.
The MathWorks offers an Image Processing Toolbox that can read these files, mak-
ing their data available to MATLAB®. (The Image Processing Toolbox is included
with the student edition and is optional with the professional edition.) The Image
Processing Toolbox also includes a wide range of functions, many of them espe-
cially appropriate for medical imaging. A limited MRI data set that has already been
converted to a format compatible with MATLAB® ships with the standard MATLAB®
program. This data set allows you to try out some of the imaging functions available
both with the standard MATLAB® installation and with the expanded imaging tool-
box, if you have it installed on your computer. Figure 1.2 shows six images of hori-
zontal slices through the brain based on the MRI data set.

The same data set can be used to construct a three-​dimensional image, such as
either of those shown in Figure 1.3. Detailed instructions on how to create these
images are included in the MATLAB® tutorial, accessed from the help button on
the MATLAB® toolbar.

Figure 1.2
Horizontal slices through
the brain, based on the
sample data file included
with MATLAB®.

Figure 1.3
Three-​dimensional
visualization of MRI data,
based on the sample
data set included with
MATLAB®.

M01_MOOR0538_04_SE_C01.INDD 20 3/1/14 12:34 AM

1.4 Problem Solving in Engineering and Science  21

2

1.5

0.5

0
0 0.5 1

x-axis

y-
ax

is

Flow Velocities from a Plenum into a Curved Pipe

1.5 2

1

Figure 1.4
Quiver plot of gas behavior
in a thrust-​vector control
device.

1.3.3 Fluid Dynamics
Calculations describing fluid velocities (speeds and directions) are important in a
number of different fields. Aerospace engineers in particular are interested in the
behavior of gases, both outside an aircraft or space vehicle and inside the combus-
tion chambers. Visualizing the three-​dimensional behavior of fluids is tricky, but
MATLAB® offers a number of tools that make it easier. Figure 1.4 represents the
flow-​field calculation results for a thrust-​vector control device as a quiver plot.
Thrust-​vector control is the process of changing the direction in which a nozzle
points (and hence the direction a rocket travels) by pushing on an actuator (a
piston-​cylinder device). The model in the figure represents a high-​pressure reser-
voir of gas (a plenum) that eventually feeds into the piston and thus controls the
length of the actuator.

1.4 Problem Solving in Engineering and Science
A consistent approach to solving technical problems is important throughout engi-
neering, science, and computer programming disciplines. The approach we out-
line here is useful in courses as diverse as chemistry, physics, thermodynamics, and
engineering design. It also applies to the social sciences, such as economics and
sociology. Different authors may formulate their problem-​solving schemes differ-
ently, but they all have the same basic format:

•	 State the problem.
❍	 Drawing a picture is often helpful in this step.
❍	 If you do not have a clear understanding of the problem, you are not likely

to be able to solve it.

Key Idea
Always use a systematic
problem-​solving strategy

M01_MOOR0538_04_SE_C01.INDD 21 3/1/14 12:34 AM

22  Chapter 1  About MATLAB®

•	 Describe the input values (knowns) and the required outputs (unknowns).
❍	 Be careful to include units as you describe the input and output values.

Sloppy handling of units often leads to wrong answers.
❍	 Identify constants you may need in the calculation, such as the ideal-​gas con-

stant and the acceleration due to gravity.
❍	 If appropriate, label a sketch with the values you have identified, or group

them into a table.
•	 Develop an algorithm to solve the problem. In computer applications, this can

often be accomplished with a hand example. You’ll need to
❍	 Identify any equations relating the knowns and unknowns.
❍	 Work through a simplified version of the problem by hand or with a calculator.

•	 Solve the problem. In this book, this step involves creating a MATLAB®
solution.

•	 Test the solution.
❍	 Do your results make sense physically?
❍	 Do they match your sample calculations?
❍	 Is your answer really what was asked for?
❍	 Graphs are often useful ways to check your calculations for reasonableness.

If you consistently use a structured problem-​solving approach, such as the one
just outlined, you’ll find that “story” problems become much easier to solve.
Example 1.1 illustrates this problem-​solving strategy.

Example 1.1
The Conversion of Matter to Energy
Albert Einstein (Figure 1.5) is arguably the most famous physicist of the 20th cen-
tury. He was born in Germany in 1879 and attended school in both Germany and
Switzerland. While working as a patent clerk in Bern, he developed his famous the-
ory of relativity. Perhaps the best-​known physics equation today is his

E = mc2.

This astonishingly simple equation links the previously separate worlds of matter
and energy and can be used to find the amount of energy released as matter is
changed in form in both natural and human-​made nuclear reactions.

The sun radiates 385 * 1024 J>s of energy, all of which is generated by nuclear
reactions converting matter to energy. Use MATLAB® and Einstein’s equation to
determine how much matter must be converted to energy to produce this much
radiation in one day.

1.	 State the Problem
Find the amount of matter necessary to produce the amount of energy radiated
by the sun every day.

2.	 Describe the Input and Output

Input

Energy: E = 385 * 1024 J>s, which must be converted into the
total energy radiated during one day

Speed of light: c = 3.0 * 108 m>s

Output

Mass m in kg

M01_MOOR0538_04_SE_C01.INDD 22 3/1/14 12:34 AM

1.4 Problem Solving in Engineering and Science  23

3.	 Develop a Hand Example
The energy radiated in one day is

385 * 1024 J>s * 3600 s>h * 24 h>day * 1 day = 3.33 * 1031 J

The equation E = mc2 must be solved for m and the values for E and c substi-
tuted. Thus

 m =
E
c2

 m =
3.33 * 1031 J

(3.0 * 108 m>s)2

 = 3.7 * 1014 J>m2s2

We can see from the output criteria that we want the mass in kg, so what went
wrong? We need to do one more unit conversion:

 1 J = 1 kg m2>s2

 = 3.7 * 1014
kg m2>s2

m2>s2 = 3.7 * 1014 kg

4.	 Develop a MATLAB® Solution
At this point, you have not learned how to create MATLAB® code. However,
you should be able to see from the following sample code that MATLAB® syn-
tax is similar to that used in most algebraic scientific calculators. MATLAB®
commands are entered at the prompt (>>), and the results are reported on the
next line. The code is as follows:

>> E=385e24   The user types in this information

E =

   3.8500e+026   This is the computer’s response

Figure 1.5
Albert Einstein.

M01_MOOR0538_04_SE_C01.INDD 23 3/1/14 12:34 AM

24  Chapter 1  About MATLAB®

>> E=E*3600*24

E =

   3.3264e+031

>> c=3e8

c =

   300000000

>> m=E/c^2

m =

   3.6960e+014

From this point on, we will not show the prompt when describing interactions
in the command window.

5.	 Test the Solution
The MATLAB® solution matches the hand calculation, but do the numbers
make sense? Anything times 1014 is a really large number. Consider, however,
that the mass of the sun is 2 * 1030 kg. We can calculate how long it would take
to consume the mass of the sun completely at a rate of 3.7 * 1014 kg>day.
We have

 Time =
Mass of the sun

Rate of consumption

 Time =
2 * 1030 kg

3.7 * 1014 kg>day
*

year

365 days
= 1.5 * 1013 years

That’s 15 trillion years! We don’t need to worry about the sun running out of
matter to convert to energy in our lifetimes.

M01_MOOR0538_04_SE_C01.INDD 24 3/1/14 12:34 AM

2

2.1 Getting Started
Using MATLAB® for the first time is easy; mastering it can take years. In this chapter,
we will introduce you to the MATLAB® environment and show you how to perform
basic mathematical computations. After reading this chapter, you should be able to
start using MATLAB® for homework assignments or on the job. Of course, you will be
able to do more things as you complete the rest of the chapters.

Because the procedure for installing MATLAB® depends upon your operating sys-
tem and your computing environment, we will assume that you have already installed
MATLAB® on your computer or that you are working in a computing laboratory with
MATLAB® already installed. To start MATLAB® in either the Windows or Apple envi-
ronment, click on the icon on the desktop, or use the start menu to find the program.
In the UNIX environment, type Matlab at the shell prompt. No matter how you start
it, once MATLAB® opens, you should see the MATLAB® prompt (>> or EDU>>), which

After reading this chapter, you
should be able to:
•	Start the MATLAB® pro-

gram and solve simple
problems in the command
window

•	Understand MATLAB®’s
use of matrices

•	Identify and use the vari-
ous MATLAB® windows

•	Define and use simple
matrices

•	Name and use variables
•	Understand the order of

operation used in
MATLAB®

•	Understand the difference
between scalar, array, and
matrix calculations in
MATLAB®

•	Express numbers in either
floating-point or scientific
notation

•	Adjust the format used to
display numbers in the
command window

•	Save the value of variables
used in a MATLAB®
session

•	Save a series of commands
in an M-file

•	Use Cell Mode

Objectives

MATLAB®
Environment

C h a p t e r

M02_MOOR0538_04_SE_C02.INDD 25 3/1/14 5:47 PM

26  Chapter 2  MATLAB® Environment

tells you that MATLAB® is ready for you to enter a command. When you have fin-
ished your MATLAB® session, you can exit MATLAB® by typing quit or exit at the
MATLAB® prompt. MATLAB® also uses the standard Windows menu bar, so you can
exit the program by selecting the close icon (x) at the upper right-hand corner of
the screen. The default MATLAB® screen, which opens each time you start the pro-
gram, is shown in Figure 2.1.

To start using MATLAB®, you need be concerned only with the command win-
dow (in the center of the screen). You can perform calculations in the command
window in a manner similar to the way you perform calculations on a scientific cal-
culator. Even most of the syntax is the same. For example, to compute the value of
5 squared, type the command

5^2

The following output will be displayed:

ans =
25

Or, to find the value of cos 1p2 , type

cos(pi)

which results in the output

ans =
-1

MATLAB® uses the standard algebraic rules for order of operation, which
becomes important when you chain calculations together. These rules are discussed
in Section 2.3.2. Notice that the value of pi is built into MATLAB®, so you do not
have to enter it yourself.

Exit
MATLAB

Show Window
Actions

Command Window
Command
History

Current folder/directory Workspace
Window

Toolstrip

Help
Figure 2.1
MATLAB® opening
window. The MATLAB®
environment consists of a
number of windows, four of
which open in the default
view. Others open as
needed during a MATLAB®
session.

Key Idea
MATLAB® uses the
standard algebraic rules
for order of operation

M02_MOOR0538_04_SE_C02.INDD 26 3/1/14 5:47 PM

2.2  MATLAB® Windows  27

Before going any further, try Practice Exercise 2.1.

Hint 
You may think some of the examples are too simple to type in yourself—that
just reading the material is sufficient. However, you will remember the mate-
rial better if you both read it and type it!

Hint 
You may find it frustrating to learn that when you make a mistake, you cannot
just overwrite your command after you have executed it. This occurs because
the command window is creating a list of all the commands you have entered.
You cannot “un-execute” a command, or “un-create” it. What you can do is
enter the command correctly and then execute your new version. MATLAB®
offers several ways to make this easier for you. One way is to use the arrow keys,
usually located on the right-hand side of your keyboard. The up arrow, c,
allows you to move through the list of commands you have executed. Once
you find the appropriate command, you can edit it and then execute your new
version.

2.2 MATLAB® Windows
MATLAB® uses several display windows. The default view, shown in Figure 2.1,
includes in the middle a large command window, located on the right, the command
history window and workspace windows, and located on the left the current folder win-
dow. In addition, document windows, graphics windows, and editing windows will auto-
matically open when needed. Each is described in the sections that follow.
MATLAB® also includes a built-in help tutorial that can be accessed from the tool-
strip, as shown in Figure 2.1. To personalize your desktop, you can resize any of
these windows, stack them on top of each other, close the ones you are not using, or

Practice Exercise 2.1

Type the following expressions into MATLAB® at the command prompt,
and observe the results. The correct answers can be found on the Pearson
website.

	 1.	 5 + 2
	 2.	 5 * 2
	 3.	 5/2
	 4.	 3 + 2 * 14 + 32
	 5.	 2.54 * 8>2.6
	 6.	 6.3 - 2.1045
	 7.	 3.6^2
	 8.	 1 + 2^2
	 9.	 sqrt(5)
	10.	 cos(pi)

M02_MOOR0538_04_SE_C02.INDD 27 3/1/14 5:47 PM

28  Chapter 2  MATLAB® Environment

“undock” them from the desktop by using ‘Show Window Actions’ menu located in
the upper right-hand corner of each window. You can restore the default configura-
tion by selecting Layout on the toolstrip, then selecting Default.

2.2.1 Command Window
The command window is located in the center pane of the default view of the
MATLAB® screen, as shown in Figure 2.1. The command window offers an environ-
ment similar to a scratch pad. Using it allows you to save the values you calculate,
but not the commands used to generate those values. If you want to save the com-
mand sequence, you will need to use the editing window to create an M-file. M-files
are described in Section 2.4.2. Both approaches are valuable. Before we introduce
M-files, we will concentrate on using the command window.

2.2.2 Command History
The command history window records the commands you issued in the command win-
dow. When you exit MATLAB®, or when you issue the clc command, the command
window is cleared. However, the command history window retains a list of all your com-
mands. You may clear the command history from the ‘Show Command History
Actions’ dropdown menu, located in the upper right-hand corner of the window. If
you work on a public computer, as a security precaution, MATLAB®’s defaults may be
set to clear the history when you exit MATLAB®. If you entered the earlier sample
commands listed in this book, notice that they are repeated in the command history
window. This window is valuable for a number of reasons, among them that it allows
you to review previous MATLAB® sessions and that it can be used to transfer com-
mands to the command window. For example, first clear the contents of the command
window by typing

clc

This action clears the command window but leaves the data in the command
history window intact. You can transfer any command from the command history
window to the command window by double-clicking (which also executes the com-
mand) or by clicking and dragging the line of code into the command window. Try
double-clicking

cos(pi)

in the command history window. The command is copied into the command win-
dow and executed. It should return

ans =
-1

Now click and drag

5^2

from the command history window into the command window. The command will
not execute until you hit Enter, and then you will get the result:

ans =
25

You will find the command history useful as you perform more and more com-
plicated calculations in the command window.

Key Idea
The command window is
similar to a scratch pad

Key Idea
The command history
records all of the
commands issued in the
command window

M02_MOOR0538_04_SE_C02.INDD 28 3/1/14 5:47 PM

2.2  MATLAB® Windows  29

2.2.3 Workspace Window
The workspace window keeps track of the variables you have defined as you execute
commands in the command window. These variables represent values stored in
the computer memory, which are available for you to use. If you have been doing
the examples, the workspace window should show just one variable, ans, and indi-
cate that it has a value of 25 and is a double array:

Key Idea
The workspace window
lists information describing
all the variables created by
the program

Name Value Size Bytes Class

 ans 25 1 * 1 8 double

(Your view of the workspace window may be slightly different, depending on
how your installation of MATLAB® is configured.)

Set the workspace window to show more about the displayed variables by right-
clicking on the bar with the column labels. Check class and bytes, in addition
to name, value, and size. Your workspace window should now display the fol-
lowing information, although you may need to resize the window to see all the
columns:

Name Value Size

 ans 25 1 * 1

The yellow grid-like symbol indicates that the variable ans is an array. The size,
1 * 1, tells us that it is a single value (one row by one column) and therefore a sca-
lar. The array uses 8 bytes of memory. MATLAB® was written in C, and the class
designation tells us that in the C language, ans is a double-precision floating-point
array. For our needs, it is enough to know that the variable ans can store a floating-
point number (a number with a decimal point). Actually, MATLAB® considers
every number you enter to be a floating-point number, whether you insert a deci-
mal point or not.

In addition to information about the size of the arrays and type of data stored
in them, you can also choose to display statistical information about the data. Once
again right click the bar in the workspace window that displays the column head-
ings. Notice that you can select from a number of different statistical measures,
such as the max, min, and standard deviation.

You can define additional variables in the command window, and they will be
listed in the workspace window. For example, typing

A = 5
returns

A =
5

Notice that the variable A has been added to the workspace window, which lists
variables in alphabetical order. Variables beginning with capital letters are listed
first, followed by variables starting with lowercase letters.

Key Idea
The default data type is
double-precision floating-
point numbers stored in a
matrix

M02_MOOR0538_04_SE_C02.INDD 29 3/1/14 5:47 PM

30  Chapter 2  MATLAB® Environment

In Section 2.3.2, we will discuss in detail how to enter matrices into MATLAB®.
For now, you can enter a simple one-dimensional matrix by typing

B = [1, 2, 3, 4]

This command returns

B =
 1   2   3   4

The commas are optional; you would get the same result with

B = [1 2 3 4]
B =

   1   2   3   4

Notice that the variable B has been added to the workspace window and that it
is a 1 * 4 array:

Name Value Size Bytes Class

 A   5 1 * 1 8 double

 ans 25 1 * 1 8 double

Name Value Size Bytes Class

 A 5 1 * 1   8 double
 B [1, 2, 3, 4] 1 * 4 32 double
 ans 25 1 * 1   8 double

Name Value Size Bytes Class

 A 5 1 * 1   8 double
 B [1 2 3 4] 1 * 4 32 double
 C 63 * 4 double7 3 * 4 96 double
 ans 25 1 * 1   8 double

You can define two-dimensional matrices in a similar fashion. Semicolons are
used to separate rows. For example,

C = [1 2 3 4; 10 20 30 40; 5 10 15 20]

returns

C =
1   2   3   4
10   20   30   40
5   10   15   20

Notice that C appears in the workspace window as a 3 * 4 matrix. To conserve
space, the values stored in the matrix are not listed.

M02_MOOR0538_04_SE_C02.INDD 30 3/1/14 5:47 PM

